Unit 22 - Spatio-temporal scripting¶
GRASS offers a Python API for space-time processing. The usage is presented in the script described below.
In the script below similar computation to Unit 11 - PyGRASS scripting and Unit 12 - Script User Interface will be performed. But instead of processing single Sentinel scene, a spatio-temporal dataset containing multiple Sentinel scenes will be processed.
UI¶
Let’s define input and output parameters of the script:
- b4 - Name of input 4th band space time raster dataset (line 19)
- b8 - Name of input 8th band space time raster dataset (line 23)
- mask - Name of the input mask (region+clouds) space time raster dataset (line 27)
- output - Name for output stats file (line 30)
- basename - Basename for output raster maps (line 33)
- threshold - Threshold for removing small areas (line 38)
Python Temporal API¶
Functions from GRASS GIS Temporal Framework:
- initialization must be done by init function, see line 144
- space time datasets are open on lines 146-148 by open_old_stds
- raster maps registered in reference dataset (b4) are listed on line 152 by get_registered_maps
- related raster maps in two other datasets (b8, cl) are searched on
lines 155-158 by get_registered_maps
with
where
parameter
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 | #!/usr/bin/env python3
#
##############################################################################
#
# MODULE: ndvi-tgrass-v1
#
# AUTHOR(S): martin
#
# PURPOSE: NDVI TGRASS version 1
#
# DATE: Sat Feb 3 15:45:35 2018
#
##############################################################################
#%module
#% description: NDVI TGRASS script version 1
#%end
#%option G_OPT_STRDS_INPUT
#% key: b4
#% description: Name of input 4th band space time raster dataset
#%end
#%option G_OPT_STRDS_INPUT
#% key: b8
#% description: Name of input 8th band space time raster dataset
#%end
#%option G_OPT_STRDS_INPUT
#% key: mask
#% description: Name of input mask space time raster dataset
#%end
#%option G_OPT_F_OUTPUT
#%end
#%option
#% key: basename
#% description: Basename for output raster maps
#% required: yes
#%end
#%option
#% key: threshold
#% description: Threshold for removing small areas
#% answer: 1600
#%end
import sys
import os
import atexit
from grass.pygrass.modules import Module
from grass.script import parser
from grass.script.vector import vector_db_select
def cleanup():
Module('g.remove', flags='f', name='ndvi', type='raster')
Module('g.remove', flags='f', name='ndvi_class', type='raster')
Module('g.remove', flags='f', name='ndvi_class', type='vector')
def compute(b4, b8, msk, output):
Module("g.region",
overwrite = True,
raster = msk,
align = b4)
Module("r.mask",
overwrite = True,
raster = msk)
Module("i.vi",
overwrite = True,
red = b4,
output = "ndvi",
nir = b8)
recode_str="""-1:0.1:1
0.1:0.5:2
0.5:1:3"""
Module("r.recode",
overwrite = True,
input = "ndvi",
output = "ndvi_class",
rules = "-",
stdin_ = recode_str)
colors_str="""1 grey
2 255 255 0
3 green"""
Module("r.colors",
map = "ndvi_class",
rules = "-",
stdin_ = colors_str)
Module("r.to.vect",
flags = 'sv',
overwrite = True,
input = "ndvi_class",
output = "ndvi_class",
type = "area")
Module("v.clean",
overwrite = True,
input = "ndvi_class",
output = output,
tool = "rmarea",
threshold = options['threshold'])
Module("v.colors",
map=output,
layer="1",
use="cat",
raster="ndvi_class")
def stats(output, date, fd):
fd.write('-' * 80)
fd.write('\n')
fd.write('NDVI class statistics ({0}: {1})'.format(output, date))
fd.write('\n')
fd.write('-' * 80)
fd.write('\n')
from subprocess import PIPE
ret = Module('v.report', map=output, option='area',
stdout_=PIPE)
for line in ret.outputs.stdout.splitlines()[1:]: # skip first line (cat|label|area)
# parse line (eg. 1||2712850)
data = line.split('|')
cat = data[0]
area = float(data[-1])
fd.write('NDVI class {0}: {1:.1f} ha'.format(cat, area/1e4))
fd.write('\n')
# v.to.rast: use -c flag for updating statistics if exists
Module('v.rast.stats', flags='c', map=output, raster='ndvi',
column_prefix='ndvi', method=['minimum','maximum','average'])
data = vector_db_select(output)
for vals in data['values'].values():
# unfortunately we need to cast values by float
fd.write('NDVI class {0}: {1:.4f} (min) {2:.4f} (max) {3:.4f} (mean)'.format(
vals[0], float(vals[2]), float(vals[3]), float(vals[4])))
fd.write('\n')
def main():
import grass.temporal as tgis
tgis.init()
sp4 = tgis.open_old_stds(options['b4'], 'raster')
sp8 = tgis.open_old_stds(options['b8'], 'raster')
msk = tgis.open_old_stds(options['mask'], 'raster')
idx = 1
fd = open(options['output'], 'w')
for item in sp4.get_registered_maps(columns='name,start_time'):
b4 = item[0]
date=item[1]
b8 = sp8.get_registered_maps(columns='name',
where="start_time = '{}'".format(date))[0][0]
ms = msk.get_registered_maps(columns='name',
where="start_time = '{}'".format(date))[0][0]
output = '{}_{}'.format(options['basename'], idx)
compute(b4, b8, ms, output)
stats(output, date, fd)
cleanup()
idx += 1
fd.close()
return 0
if __name__ == "__main__":
options, flags = parser()
sys.exit(main())
|
Sample script to download: ndvi-tgrass-v1.py
Example of usage:
ndvi-tgrass.py b4=b4 b8=b8 mask=clouds basename=ndvi out=stats.txt
Possible output:
--------------------------------------------------------------------------------
NDVI class statistics (ndvi_1: 2019-04-07 10:20:21)
--------------------------------------------------------------------------------
NDVI class 1: 182.4 ha
NDVI class 2: 4923.4 ha
NDVI class 3: 6330.2 ha
NDVI class 1: -0.2073 (min) 0.4915 (max) 0.0554 (mean)
NDVI class 2: -0.2380 (min) 0.9989 (max) 0.3736 (mean)
NDVI class 3: -0.4533 (min) 0.9988 (max) 0.6468 (mean)
...
--------------------------------------------------------------------------------
NDVI class statistics (ndvi_7: 2019-10-14 10:20:31)
--------------------------------------------------------------------------------
NDVI class 1: 163.4 ha
NDVI class 2: 2669.2 ha
NDVI class 3: 8603.6 ha
NDVI class 1: -0.2253 (min) 0.7481 (max) 0.0457 (mean)
NDVI class 2: -1.0000 (min) 0.9994 (max) 0.2999 (mean)
NDVI class 3: -0.9978 (min) 0.9994 (max) 0.6992 (mean)